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Background and Objective
• A redistribution layer (RDL) in integrated circuit (IC) fabrication is a packaging layer that allows 

multiple different IC chips or die to be integrated together (fig. 1). 
• Within RDL, the copper interconnects are fabricated with an electrochemical plating (ECP), a 

process in which one metal is plated onto another (fig. 2).
• Prone to pattern dependent variations in height (fig. 3), ECP must be planarized using chemical 

mechanical polishing (CMP) in order to prevent subsequent lithography issues.
• Objective: Predict these ECP variations with machine learning models such that the CMP step can 

be avoided or replaced by a simpler and lower cost alternative.
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Figure 3: Height variation in copper interconnectsFigure 2: Electroplating Process (ECP)

Research Overview
• Creating and optimizing neural networks (NN), emerging machine learning models, to predict ECP 

RDL variation.
• Create NN structure based on a previous statistical and physically-motivated model and explore 

similar model structures.

Methods
• A series of models were created to compare performance between a generic NN and the 

statistical/physically motivated model in TensorFlow, a machine learning API.
• Training data was 3 different layouts that were experimentally grown and measured (fig. 4-7). This 

dataset was expanded with rotated and mirrored versions as a form of regularization.
• Models were trained by reducing the root mean squared error (RMSE) between predictions with 

the training data and experimental results.
• Performance was measured by testing the error on differing (or similar) layouts after training. 

Figure 4-5: 2 training input images before rotation or mirroring

Figure 10: Single Image Actual Height Figure 11: Single Image Test Fit

Future Work
• Only a select number of NN architectures were explored in the course of this research. Thus, 

future work can focus on determining whether different NN models can provide similar or 
improved results.

• Much of the current work was not run until the model converged since runtimes were too long. 
Thus, further improvements can be made on model initialization and training speed. Work was 
done in TensorFlow which was found to be non-ideal for this project; an alternative to explore 
would be to make the neural networks in a different machine learning tool or from scratch. 

• Current work seems to show that more physical intuition behind the model results in a better 
prediction. Thus, adding physical constraints, or choosing better initializations could improve 
results.

• Explore in more depth the mixed model. Are the filters learned similar to the filters found 
previously? Are there more features that can be used to get a better fit?

Modified Model Based on Previous Work
• Previous statistical and physically based NN architecture (fig. 16). 

• Explicit feature maps: Density and Pitch filters.
• Non-linear function (NLF): Ratio of Polynomials.

Figure 16: Prev. Highly Structured Model 

Figure 17: NN Non-Linear function estimator

Figure 6-7: 2 training comparison images before rotation or 
mirroring

Cascaded NN with Non-Linear Units
• Cascaded model structure of decreasing size filters. After each layer there was softplus non-linear 

unit (fig. 12). 
• Is a commonly used neural network structure used for image recognition.
• Able to account for the corner variations and general shape of the input layout but was unable to 

get the feature scale variations present in the output (fig. 13-15).
• Had “flat” property in training fit due to the non-linearity units present in the model.
• Test layout resulted in larger errors due to overfitting, where the model is fitting the noise rather 

than the underlying relationship.

Simple Convolution NN
• Simple convolutional neural network model with a single filter and bias to the output (fig. 8)
• The model was able to get the average height of the interconnects but was unable to predict much 

of the corner variations (fig. 9-11). 
• With multiple images, this model ignored the large corner variations in height and just retained 

the average height.
• Both with a single image and multiple image training, the model did poorly on new layouts.
• Other tests were done with non-linearity unit pass-through added after the bias to take into 

account the corner variations in actual results. Only resulted in marginal difference.

Figure 1: IC Packaging

Figure 14: Single Image Training Fit Figure 15: Single Image Test Fit

Conclusion
• Explored the use of neural networks to predict ECP variations using multiple model structures. 
• Initial filter layers are only able to take into account the macro variations present in the model. 

Thus adding more depth to the model, results in a better training fit. Additionally, inputting non-
linear units at each stage results in capturing a wider range of phenomenon. 

• The non-linear function estimator model based on previous statistical and physical based work was 
much more effective in reducing the “flat” property found in previous models. 

• The best performing model structure was the modified model work when there were a large 
number of neurons in the NLF estimator. 

• Current work changes the previous model by estimating the feature maps and estimating the NLF 
using a NN estimator (fig. 17).

• New model fitted the macro heights but failed to estimate the inner corner variations (fig. 18-20).
• Additional neurons added to the estimated function resulted in a better training fit but more 

training time. 
• Similar to previous models, the fit of the test layouts was large in error due to overfitting. 

Figure 20: 40 Neuron NLF Model Training Fit 

Figure 8: Simple Convolution NN Model

Figure 9: Model Results

Figure 12: Single Image RMSE

Figure 13: Single Image RMSE

Figure 19: Single Image Actual Height

Figure 18: Model Results for NN Non-Linear Function Estimator
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